Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 10 de 10
Фильтр
1.
Environ Sci Pollut Res Int ; 30(24): 66102-66112, 2023 May.
Статья в английский | MEDLINE | ID: covidwho-2307023

Реферат

A generation of microplastics caused by improper disposal of disposable masks has become a non-negligible environmental concern. In order to investigate the degradation mechanisms of masks and the release of microplastics under different environmental conditions, the masks are placed in 4 common environments. After 30 days of weathering, the total amount and release kinetics of microplastics released from different layers of the mask were studied. The chemical and mechanical properties of the mask were also discussed. The results showed that the mask released 25141±3543 particles/mask into the soil, which is much more than the sea and river water. The release kinetics of microplastics fit the Elovich model better. All samples correspond to the release rate of microplastics from fast to slow. Experiments show that the middle layer of the mask is released more than the other layers, and the amount of release was highest in the soil. And the tensile capacity of the mask is negatively correlated with its ability to release microplastics in the following order, which are soil > seawater > river > air > new masks. In addition, during the weathering process, the C-C/C-H bond of the mask was broken.


Тема - темы
Microplastics , Plastics , Fresh Water , Kinetics , Soil
2.
Sci Total Environ ; 880: 163269, 2023 Jul 01.
Статья в английский | MEDLINE | ID: covidwho-2299251

Реферат

While the multifaceted social, economic, and public health impacts associated with the COVID-19 pandemic are known, little is known about its effects on non-target aquatic ecosystems and organisms. Thus, we aimed to evaluate the potential ecotoxicity of SARS-CoV-2 lysate protein (SARS.CoV2/SP02.2020.HIAE.Br) in adult zebrafish (Danio rerio) at predicted environmentally relevant concentrations (0.742 and 2.226 pg/L), by 30 days. Although our data did not show locomotor alterations or anxiety-like or/and anxiolytic-like behavior, we noticed that exposure to SARS-CoV-2 negatively affected habituation memory and social aggregation of animals in response to a potential aquatic predator (Geophagus brasiliensis). An increased frequency of erythrocyte nuclear abnormalities was also observed in animals exposed to SARS-CoV-2. Furthermore, our data suggest that such changes were associated with a redox imbalance [↑ROS (reactive oxygen species), ↑H2O2 (hydrogen peroxide), ↓SOD (superoxide dismutase), and ↓CAT (catalase)], cholinesterasic effect [↑AChE (acetylcholinesterase) activity], as well as the induction of an inflammatory immune response [↑NO (nitric oxide), ↑IFN-γ (interferon-gamma), and ↓IL-10 (interleukin-10)]. For some biomarkers, we noticed that the response of the animals to the treatments was not concentration-dependent. However, principal component analysis (PCA) and the "Integrated Biomarker Response" index (IBRv2) indicated a more prominent ecotoxicity of SARS-CoV-2 at 2.226 pg/L. Therefore, our study advances knowledge about the ecotoxicological potential of SARS-CoV-2 and reinforces the presumption that the COVID-19 pandemic has negative implications beyond its economic, social, and public health impacts.


Тема - темы
COVID-19 , Water Pollutants, Chemical , Animals , Humans , Zebrafish/physiology , SARS-CoV-2 , Oxidative Stress , Acetylcholinesterase/metabolism , Ecosystem , Pandemics , Fresh Water , Water Pollutants, Chemical/analysis
3.
Viruses ; 14(12)2022 11 23.
Статья в английский | MEDLINE | ID: covidwho-2200865

Реферат

Freshwater mussels (Unionida) are among the world's most imperiled taxa, but the relationship between freshwater mussel mortality events and infectious disease is largely unstudied. We surveyed viromes of a widespread and abundant species (mucket, Actinonaias ligamentina; syn: Ortmanniana ligamentina) experiencing a mortality event of unknown etiology in the Huron River, Michigan, in 2019-2020 and compared them to viromes from mucket in a healthy population in the St. Croix River, Wisconsin and a population from the Clinch River, Virginia and Tennessee, where a mortality event was affecting the congeneric pheasantshell (Actinonaias pectorosa; syn: Ortmanniana pectorosa) population. We identified 38 viruses, most of which were associated with mussels collected during the Huron River mortality event. Viral richness and cumulative viral read depths were significantly higher in moribund mussels from the Huron River than in healthy controls from each of the three populations. Our results demonstrate significant increases in the number and intensity of viral infections for freshwater mussels experiencing mortality events, whereas individuals from healthy populations have a substantially reduced virome comprising a limited number of species at low viral read depths.


Тема - темы
Bivalvia , Humans , Animals , Fresh Water , Rivers , Michigan , Wisconsin
4.
Chemosphere ; 299: 134373, 2022 Jul.
Статья в английский | MEDLINE | ID: covidwho-1748141

Реферат

The ongoing COVID-19 pandemic is leading to an increase of the global production of plastics since the use of personal protective equipment (PPEs, i.e. gloves, gowns, masks, packaging items), has become mandatory to prevent the spread of the virus. Plastic breaks down into micro/nano particles due to physical or chemical or biological actions into environment. Due to small dimensions, ubiquitous and persistent nature, the plastic particles represent a significant threat to ecosystems and can entry into food chains. Among the plastic polymers used for PPEs, polystyrene is less studied regarding its eco-geno-toxicity. This study aims to investigate acute, chronic and subchronic effects of the microplastic polystyrene beads (PS-MP, size 1.0 µm) on three freshwater species, the alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the crustacean Ceriodaphnia dubia and the benthic ostracod Heterocypris incongruens. Furthermore, the potential genotoxicity and the ROS production due to the PS-MP were also determined in C. dubia. Results revealed that the acute effects occurred at concentrations of PS-MP in the order of dozens of mg/L in B. calyciflorus and C. dubia and hundreds of mg/L in H. incongruens. Regarding long-term toxicity, increasing chronic effects with EC50s in the order of units (C. dubia), hundreds (B. calyciflorus) and thousands (R. subcapitata) of µg/L were observed. Both for acute and chronic/sub chronic toxicity, daphnids were more sensitive to polystyrene than ostracods. Moreover, when C. dubia neonates were exposed to the PS-MP, alterations in genetic material as well as the production of ROS occurred, starting from concentrations in the order of units of µg/L, probably due to inflammatory responses. At last, the risk quotient (RQ) as a measure of risk posed by PS-MPs in freshwater environment, was calculated obtaining a value of 7.2, higher than the threshold value of 1.


Тема - темы
COVID-19 , Rotifera , Water Pollutants, Chemical , Animals , Aquatic Organisms , Ecosystem , Fresh Water , Humans , Infant, Newborn , Microplastics/toxicity , Pandemics , Plastics/toxicity , Polystyrenes/toxicity , Reactive Oxygen Species , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
5.
Sci Total Environ ; 820: 153049, 2022 May 10.
Статья в английский | MEDLINE | ID: covidwho-1730084

Реферат

With the outbreak and widespread of the COVID-19 pandemic, large numbers of disposable face masks (DFMs) were abandoned in the environment. This study first investigated the sorption and desorption behaviors of four antibiotics (tetracycline (TC), ciprofloxacin (CIP), sulfamethoxazole (SMX), and triclosan (TCS)) on DFMs in the freshwater and seawater. It was found that the antibiotics in the freshwater exhibited relatively higher sorption and desorption capacities on the DFMs than those in the seawater. Here the antibiotics sorption processes were greatly related to their zwitterion species while the effect of salinity on the sorption processes was negligible. However, the desorption processes were jointly dominated by solution pH and salinity, with greater desorption capacities at lower pH values and salinity. Interestingly, we found that the distribution coefficient (Kd) of TCS (0.3947 L/g) and SMX (0.0399 L/g) on DFMs was higher than those on some microplastics in freshwater systems. The sorption affinity of the antibiotics onto the DFMs followed the order of TCS > SMX > CIP > TC, which was positively correlated with octanol-water partition coefficient (log Kow) of the antibiotics. Besides, the sorption processes of the antibiotics onto the DFMs were mainly predominated by film diffusion and partitioning mechanism. Overall, hydrophobic interaction regulated the antibiotics sorption processes. These findings would help to evaluate the environmental behavior of DFMs and to provide the analytical framework of their role in the transport of other pollutants.


Тема - темы
COVID-19 , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents/chemistry , Fresh Water/chemistry , Humans , Masks , Pandemics , Plastics/chemistry , Seawater/chemistry , Water Pollutants, Chemical/analysis
6.
Sensors (Basel) ; 21(24)2021 Dec 07.
Статья в английский | MEDLINE | ID: covidwho-1594451

Реферат

Water temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), and salinity levels are the critical cultivation factors for freshwater aquaculture. This paper proposes a novel wireless multi-sensor system by integrating the temperature, pH, DO, and EC sensors with an ESP 32 Wi-Fi module for monitoring the water quality of freshwater aquaculture, which acquires the sensing data and salinity information directly derived from the EC level. The information of water temperature, pH, DO, EC, and salinity levels was displayed in the ThingSpeak IoT platform and was visualized in a user-friendly manner by ThingView APP. Firstly, these sensors were integrated with an ESP32 Wi-Fi platform. The observations of sensors and the estimated salinity from the EC level were then transmitted by a Wi-Fi network to an on-site Wi-Fi access point (AP). The acquired information was further transmitted to the ThingSpeak IoT and displayed in the form of a web-based monitoring system which can be directly visualized by online browsing or the ThingView APP. Through the complete processes of pre-calibration, in situ measurement, and post-calibration, the results illustrate that the proposed wireless multi-sensor IoT system has sufficient accuracy, reliable confidence, and a good tolerance for monitoring the water quality of freshwater aquaculture.


Тема - темы
Aquaculture , Water Quality , Electrocardiography , Fresh Water , Temperature
7.
J Hazard Mater ; 423(Pt B): 127152, 2022 02 05.
Статья в английский | MEDLINE | ID: covidwho-1401614

Реферат

Chlorine disinfection is a key global public health strategy for the prevention and control of diseases, such as COVID-19. However, little is known about effects of low levels of residual chlorine on freshwater microbial communities and antibiotic resistomes. Here, we treated freshwater microcosms with continuous low concentrations of chlorine and quantified the effects on aquatic and zebrafish intestinal microbial communities and antibiotic resistomes, using shotgun metagenome and 16S rRNA gene sequencing. Although chlorine rapidly degraded, it altered the aquatic microbial community composition over time and disrupted interactions among microbes, leading to decreases in community complexity and stability. However, community diversity was unaffected. The majority of ecological functions, particularly metabolic capacities, recovered after treatment with chlorine for 14 d, due to microbial community redundancy. There were also increased levels of antibiotic-resistance gene dissemination by horizontal and vertical gene transfer under chlorine treatment. Although the zebrafish intestinal microbial community recovered from temporary dysbiosis, growth and behavior of zebrafish adults were negatively affected by chlorine. Overall, our findings demonstrate the negative effects of residual chlorine on freshwater ecosystems and highlight a possible long-term risk to public health.


Тема - темы
COVID-19 , Microbiota , Animals , Chlorine/toxicity , Drug Resistance, Microbial , Fresh Water , RNA, Ribosomal, 16S/genetics , SARS-CoV-2 , Zebrafish
8.
J Hazard Mater ; 421: 126679, 2022 01 05.
Статья в английский | MEDLINE | ID: covidwho-1313241

Реферат

Intensive disinfection of wastewater during the COVID-19 pandemic might elevate the generation of toxic disinfection byproducts (DBPs), which has triggered global concerns about their ecological risks to natural aquatic ecosystems. In this study, the toxicity of 17 DBPs typically present in wastewater effluents on three representative microalgae, including Scenedesmus sp. (Chlorophyta), Microcystis aeruginosa (Cyanophyta), and Cyclotella sp. (Bacillariophyta) was investigated. The sensitivities of the three microalgae to DBPs varied greatly from species to species, indicating that DBPs may change the structure of phytoplankton communities. Later, co-cultures of these phytoplankton groups as a proxy of ecological freshwater scenario were conducted to explore the impacts of DBPs on phytoplankton community succession. M. aeruginosa became surprisingly dominant in co-cultures, representing over 50% after dosing with monochloroacetic acid (MCAA, 0.1-10 mg/L). The highest proportion of M. aeruginosa was 70.3% when exposed to 2 mg/L MCAA. Although Scenedesmus sp. dominated in monochloroacetonitrile (MCAN) exposure, M. aeruginosa accounted for no less than 30% even at 40 mg/L MCAN. In this study, DBPs disrupted the original inter-algal relationship in favor of M. aeruginosa, suggesting that DBPs may contribute to the outbreak of cyanobacterial blooms in aquatic ecosystems.


Тема - темы
Disinfectants/toxicity , Phytoplankton/drug effects , Scenedesmus , Coculture Techniques , Disinfection , Ecosystem , Fresh Water , Scenedesmus/drug effects
9.
Nature ; 578(7795): 345-346, 2020 02.
Статья в английский | MEDLINE | ID: covidwho-828254

Тема - темы
Biodiversity , Ecosystem , Animals , China , Fishes , Fresh Water
10.
Water Res ; 182: 115966, 2020 Sep 01.
Статья в английский | MEDLINE | ID: covidwho-621821

Реферат

The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element.


Тема - темы
Coronavirus Infections , Drinking Water , Pandemics , Pneumonia, Viral , Water Pollutants, Chemical/analysis , Betacoronavirus , COVID-19 , Contrast Media , Fresh Water , Gadolinium , Humans , SARS-CoV-2
Критерии поиска